ROL
Public Member Functions | List of all members
ROL::Vector< Real > Class Template Referenceabstract

Defines the linear algebra or vector space interface. More...

#include <ROL_Vector.hpp>

+ Inheritance diagram for ROL::Vector< Real >:

Public Member Functions

virtual ~Vector ()
 
virtual void plus (const Vector &x)=0
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
virtual void scale (const Real alpha)=0
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
virtual Real dot (const Vector &x) const =0
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
virtual Real norm () const =0
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
virtual Teuchos::RCP< Vectorclone () const =0
 Clone to make a new (uninitialized) vector. More...
 
virtual void axpy (const Real alpha, const Vector &x)
 Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\). More...
 
virtual void zero ()
 Set to zero vector. More...
 
virtual Teuchos::RCP< Vectorbasis (const int i) const
 Return i-th basis vector. More...
 
virtual int dimension () const
 Return dimension of the vector space. More...
 
virtual void set (const Vector &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\). More...
 
virtual const Vectordual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
virtual void applyUnary (const Elementwise::UnaryFunction< Real > &f)
 
virtual void applyBinary (const Elementwise::BinaryFunction< Real > &f, const Vector &x)
 
virtual Real reduce (const Elementwise::ReductionOp< Real > &r) const
 
virtual std::vector< Real > checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const
 Verify vector-space methods. More...
 

Detailed Description

template<class Real>
class ROL::Vector< Real >

Defines the linear algebra or vector space interface.

The basic linear algebra interface, to be implemented by the user, includes:

The dot product can represent an inner product (in Hilbert space) or a duality pairing (in general Banach space).

There are additional virtual member functions that can be overloaded for computational efficiency.

Definition at line 74 of file ROL_Vector.hpp.

Constructor & Destructor Documentation

◆ ~Vector()

template<class Real>
virtual ROL::Vector< Real >::~Vector ( )
inlinevirtual

Definition at line 77 of file ROL_Vector.hpp.

Member Function Documentation

◆ plus()

template<class Real>
virtual void ROL::Vector< Real >::plus ( const Vector< Real > &  x)
pure virtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).
   On return \form#9.

   ---

Implemented in H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, ConDualStdVector< Real, Element >, ConDualStdVector< Real, Element >, ConStdVector< Real, Element >, ConStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptStdVector< Real, Element >, ROL::RiskVector< Real >, ROL::SimulatedVector< Real >, OptStdVector< Real, Element >, ROL::PartitionedVector< Real >, OptStdVector< Real, Element >, ROL::SROMVector< Real >, ROL::StdVector< Real, Element >, ROL::StdVector< Real >, ROL::CArrayVector< Real, Element >, ROL::Vector_SimOpt< Real >, and ROL::ElementwiseVector< Real >.

Referenced by ROL::CompositeStep< Real >::accept(), ROL::Bundle< Real >::aggregate(), ROL::ProjectedNewtonKrylovStep< Real >::HessianPNK::apply(), ROL::EqualityConstraint_Partitioned< Real >::applyAdjointHessian(), ROL::CompositeEqualityConstraint_SimOpt< Real >::applyAdjointHessian_22(), ROL::EqualityConstraint_Partitioned< Real >::applyAdjointJacobian(), ROL::BoundInequalityConstraint< Real >::applyAdjointJacobian(), ROL::ProjectedNewtonKrylovStep< Real >::PrecondPNK::applyInverse(), ROL::EqualityConstraint_SimOpt< Real >::applyJacobian(), ROL::Vector< Real >::axpy(), ROL::ProjectedNewtonStep< Real >::compute(), ROL::ProjectedSecantStep< Real >::compute(), ROL::PrimalDualActiveSetStep< Real >::compute(), ROL::CompositeStep< Real >::computeLagrangeMultiplier(), ROL::Constraints< Real >::computeProjectedStep(), ROL::BoundConstraint< Real >::computeProjectedStep(), ROL::QuadraticObjective< Real >::gradient(), ROL::KelleySachsModel< Real >::gradient(), ROL::TrustRegionModel< Real >::gradient(), ROL::AugmentedLagrangian< Real >::gradient(), ROL::Reduced_Objective_SimOpt< Real >::gradient(), ROL::Reduced_ParametrizedObjective_SimOpt< Real >::gradient(), ROL::ColemanLiModel< Real >::gradient(), ROL::ZOO::Objective_PoissonInversion< Real >::gradient(), ROL::AugmentedLagrangian_SimOpt< Real >::gradient_1(), ROL::AugmentedLagrangian_SimOpt< Real >::gradient_2(), ROL::NonlinearLeastSquaresObjective< Real >::hessVec(), ROL::KelleySachsModel< Real >::hessVec(), ROL::QuadraticPenalty< Real >::hessVec(), ROL::AugmentedLagrangian< Real >::hessVec(), ROL::Reduced_Objective_SimOpt< Real >::hessVec(), ROL::Reduced_ParametrizedObjective_SimOpt< Real >::hessVec(), ROL::ColemanLiModel< Real >::hessVec(), ROL::QuadraticPenalty_SimOpt< Real >::hessVec_11(), ROL::AugmentedLagrangian_SimOpt< Real >::hessVec_11(), ROL::AugmentedLagrangian_SimOpt< Real >::hessVec_12(), ROL::QuadraticPenalty_SimOpt< Real >::hessVec_12(), ROL::AugmentedLagrangian_SimOpt< Real >::hessVec_21(), ROL::QuadraticPenalty_SimOpt< Real >::hessVec_21(), ROL::AugmentedLagrangian_SimOpt< Real >::hessVec_22(), ROL::QuadraticPenalty_SimOpt< Real >::hessVec_22(), ROL::KelleySachsModel< Real >::invHessVec(), ROL::KelleySachsModel< Real >::precond(), ROL::KelleySachsModel< Real >::primalTransform(), ROL::ProjectedObjective< Real >::reducedHessVec(), ROL::ProjectedObjective< Real >::reducedInvHessVec(), ROL::ProjectedObjective< Real >::reducedPrecond(), ROL::GMRES< Real >::run(), ROL::Vector< Real >::set(), ROL::EqualityConstraint< Real >::solveAugmentedSystem(), Normalization_Constraint< Real >::solveAugmentedSystem(), ROL::CompositeStep< Real >::solveTangentialSubproblem(), ROL::NewtonStep< Real >::update(), ROL::GradientStep< Real >::update(), ROL::NonlinearCGStep< Real >::update(), ROL::SecantStep< Real >::update(), ROL::ProjectedNewtonStep< Real >::update(), ROL::TrustRegion< Real >::update(), ROL::ProjectedSecantStep< Real >::update(), ROL::NewtonKrylovStep< Real >::update(), ROL::AugmentedLagrangianStep< Real >::update(), ROL::InteriorPointStep< Real >::update(), ROL::MoreauYosidaPenaltyStep< Real >::update(), ROL::ProjectedNewtonKrylovStep< Real >::update(), ROL::CompositeStep< Real >::update(), ROL::BundleStep< Real >::update(), and ROL::PrimalDualActiveSetStep< Real >::update().

◆ scale()

template<class Real>
virtual void ROL::Vector< Real >::scale ( const Real  alpha)
pure virtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).
   On return \form#11.

   ---

Implemented in H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, ConDualStdVector< Real, Element >, ConDualStdVector< Real, Element >, ConStdVector< Real, Element >, ConStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptStdVector< Real, Element >, ROL::RiskVector< Real >, ROL::StdVector< Real, Element >, ROL::StdVector< Real >, ROL::SimulatedVector< Real >, ROL::CArrayVector< Real, Element >, OptStdVector< Real, Element >, ROL::PartitionedVector< Real >, OptStdVector< Real, Element >, ROL::SROMVector< Real >, ROL::Vector_SimOpt< Real >, and ROL::ElementwiseVector< Real >.

Referenced by DyadicOperator< Real >::apply(), ROL::EqualityConstraint< Real >::applyAdjointHessian(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_11(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_12(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_21(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_22(), ROL::UpperBoundInequalityConstraint< Real >::applyAdjointJacobian(), ROL::ScalarLinearEqualityConstraint< Real >::applyAdjointJacobian(), ROL::CompositeEqualityConstraint_SimOpt< Real >::applyAdjointSens(), ROL::BarzilaiBorwein< Real >::applyB(), ROL::lDFP< Real >::applyB0(), ROL::Secant< Real >::applyB0(), ROL::BarzilaiBorwein< Real >::applyH(), ROL::lDFP< Real >::applyH0(), ROL::Secant< Real >::applyH0(), ROL::UpperBoundInequalityConstraint< Real >::applyJacobian(), ROL::EqualityConstraint< Real >::applyJacobian(), ROL::EqualityConstraint_SimOpt< Real >::applyJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::applyJacobian_2(), ROL::CompositeEqualityConstraint_SimOpt< Real >::applySens(), ROL::CauchyPoint< Real >::cauchypoint_unc(), ROL::NewtonStep< Real >::compute(), ROL::GradientStep< Real >::compute(), ROL::ProjectedNewtonStep< Real >::compute(), ROL::NonlinearCGStep< Real >::compute(), ROL::SecantStep< Real >::compute(), ROL::ProjectedSecantStep< Real >::compute(), ROL::BundleStep< Real >::compute(), ROL::NewtonKrylovStep< Real >::compute(), ROL::ProjectedNewtonKrylovStep< Real >::compute(), ROL::LineSearchStep< Real >::compute(), ROL::AugmentedLagrangianStep< Real >::computeGradient(), ROL::CompositeStep< Real >::computeQuasinormalStep(), ROL::LogBarrierObjective< Real >::gradient(), ROL::ZOO::Objective_SumOfSquares< Real >::gradient(), ROL::ZOO::Objective_Zakharov< Real >::gradient(), ROL::AugmentedLagrangian< Real >::gradient(), ROL::AugmentedLagrangian_SimOpt< Real >::gradient_1(), ROL::AugmentedLagrangian_SimOpt< Real >::gradient_2(), ROL::ZOO::Objective_HS24< Real >::hessVec(), ROL::Objective< Real >::hessVec(), ROL::QuadraticPenalty< Real >::hessVec(), ROL::AugmentedLagrangian< Real >::hessVec(), ROL::Objective_SimOpt< Real >::hessVec_11(), ROL::QuadraticPenalty_SimOpt< Real >::hessVec_11(), ROL::AugmentedLagrangian_SimOpt< Real >::hessVec_11(), ROL::Objective_SimOpt< Real >::hessVec_12(), ROL::AugmentedLagrangian_SimOpt< Real >::hessVec_12(), ROL::QuadraticPenalty_SimOpt< Real >::hessVec_12(), ROL::Objective_SimOpt< Real >::hessVec_21(), ROL::AugmentedLagrangian_SimOpt< Real >::hessVec_21(), ROL::QuadraticPenalty_SimOpt< Real >::hessVec_21(), ROL::Objective_SimOpt< Real >::hessVec_22(), ROL::AugmentedLagrangian_SimOpt< Real >::hessVec_22(), ROL::QuadraticPenalty_SimOpt< Real >::hessVec_22(), ROL::ZOO::Objective_SumOfSquares< Real >::invHessVec(), ROL::ZOO::Objective_Zakharov< Real >::invHessVec(), ROL::ColemanLiModel< Real >::primalTransform(), ROL::ZOO::Objective_PoissonInversion< Real >::reg_gradient(), ROL::ZOO::Objective_PoissonInversion< Real >::reg_hessVec(), ROL::DogLeg< Real >::run(), ROL::DoubleDogLeg< Real >::run(), Normalization_Constraint< Real >::solveAugmentedSystem(), and ROL::Vector< Real >::zero().

◆ dot()

template<class Real>
virtual Real ROL::Vector< Real >::dot ( const Vector< Real > &  x) const
pure virtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implemented in H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, ConDualStdVector< Real, Element >, ConDualStdVector< Real, Element >, ConStdVector< Real, Element >, ConStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptDualStdVector< Real, Element >, ROL::DualAtomVector< Real >, OptDualStdVector< Real, Element >, ROL::DualProbabilityVector< Real >, OptStdVector< Real, Element >, ROL::DualScaledStdVector< Real, Element >, ROL::RiskVector< Real >, ROL::SimulatedVector< Real >, ROL::PartitionedVector< Real >, ROL::PrimalAtomVector< Real >, ROL::StdVector< Real, Element >, ROL::StdVector< Real >, OptStdVector< Real, Element >, ROL::PrimalProbabilityVector< Real >, OptStdVector< Real, Element >, ROL::SROMVector< Real >, ROL::CArrayVector< Real, Element >, ROL::Vector_SimOpt< Real >, ROL::PrimalScaledStdVector< Real, Element >, ROL::ElementwiseVector< Real >, and ROL::BatchStdVector< Real >.

Referenced by ROL::CompositeStep< Real >::accept(), DyadicOperator< Real >::apply(), ROL::lBFGS< Real >::applyB(), ROL::lBFGS< Real >::applyH(), ROL::EqualityConstraint< Real >::checkAdjointConsistencyJacobian(), ROL::EqualityConstraint_SimOpt< Real >::checkAdjointConsistencyJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::checkAdjointConsistencyJacobian_2(), ROL::Objective< Real >::checkGradient(), ROL::Objective< Real >::checkHessSym(), ROL::BundleStep< Real >::compute(), ROL::ZOO::Objective_Zakharov< Real >::dirDeriv(), ROL::LineSearchStep< Real >::GradDotStep(), ROL::Objective< Real >::gradient(), ROL::ZOO::Objective_Zakharov< Real >::gradient(), ROL::Objective_SimOpt< Real >::gradient_1(), ROL::Objective_SimOpt< Real >::gradient_2(), ROL::ZOO::Objective_Zakharov< Real >::invHessVec(), ROL::DoubleDogLeg< Real >::run(), ROL::EqualityConstraint< Real >::solveAugmentedSystem(), ROL::CompositeStep< Real >::solveTangentialSubproblem(), ROL::LineSearch< Real >::status(), ROL::TrustRegion< Real >::update(), ROL::lSR1< Real >::updateStorage(), ROL::Secant< Real >::updateStorage(), ROL::ZOO::Objective_SumOfSquares< Real >::value(), ROL::LinearObjective< Real >::value(), ROL::QuadraticObjective< Real >::value(), and ROL::ZOO::Objective_Zakharov< Real >::value().

◆ norm()

template<class Real>
virtual Real ROL::Vector< Real >::norm ( ) const
pure virtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implemented in H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, ConDualStdVector< Real, Element >, ConDualStdVector< Real, Element >, ConStdVector< Real, Element >, ConStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptStdVector< Real, Element >, ROL::RiskVector< Real >, ROL::SimulatedVector< Real >, ROL::PartitionedVector< Real >, ROL::StdVector< Real, Element >, ROL::StdVector< Real >, OptStdVector< Real, Element >, OptStdVector< Real, Element >, ROL::SROMVector< Real >, ROL::CArrayVector< Real, Element >, ROL::Vector_SimOpt< Real >, and ROL::ElementwiseVector< Real >.

Referenced by ROL::CompositeStep< Real >::accept(), ROL::EqualityConstraint< Real >::applyAdjointHessian(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_11(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_12(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_21(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_22(), ROL::EqualityConstraint< Real >::applyAdjointJacobian(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointJacobian_2(), ROL::EqualityConstraint< Real >::applyJacobian(), ROL::EqualityConstraint_SimOpt< Real >::applyJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::applyJacobian_2(), ROL::CauchyPoint< Real >::cauchypoint_unc(), ROL::EqualityConstraint_SimOpt< Real >::checkInverseAdjointJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::checkInverseJacobian_1(), ROL::PrimalDualActiveSetStep< Real >::compute(), ROL::TrustRegionStep< Real >::computeCriticalityMeasure(), ROL::AugmentedLagrangianStep< Real >::computeGradient(), ROL::ColemanLiModel< Real >::getScalarBounds(), ROL::InteriorPoint::PenalizedObjective< Real >::gradient(), ROL::Objective< Real >::hessVec(), ROL::Objective_SimOpt< Real >::hessVec_11(), ROL::Objective_SimOpt< Real >::hessVec_12(), ROL::Objective_SimOpt< Real >::hessVec_21(), ROL::Objective_SimOpt< Real >::hessVec_22(), ROL::ConjugateGradients< Real >::run(), ROL::ConjugateResiduals< Real >::run(), ROL::DogLeg< Real >::run(), ROL::DoubleDogLeg< Real >::run(), ROL::TruncatedCG< Real >::run(), ROL::EqualityConstraint_SimOpt< Real >::solve(), EqualityConstraint_BurgersControl< Real >::solve(), ROL::CompositeStep< Real >::solveTangentialSubproblem(), ROL::NewtonStep< Real >::update(), ROL::GradientStep< Real >::update(), ROL::NonlinearCGStep< Real >::update(), ROL::SecantStep< Real >::update(), ROL::ProjectedNewtonStep< Real >::update(), ROL::ProjectedSecantStep< Real >::update(), ROL::NewtonKrylovStep< Real >::update(), ROL::AugmentedLagrangianStep< Real >::update(), ROL::InteriorPointStep< Real >::update(), ROL::MoreauYosidaPenaltyStep< Real >::update(), ROL::ProjectedNewtonKrylovStep< Real >::update(), and ROL::PrimalDualActiveSetStep< Real >::update().

◆ clone()

template<class Real>
virtual Teuchos::RCP<Vector> ROL::Vector< Real >::clone ( ) const
pure virtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implemented in H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, ConDualStdVector< Real, Element >, ConDualStdVector< Real, Element >, ConStdVector< Real, Element >, ConStdVector< Real, Element >, OptDualStdVector< Real, Element >, ROL::DualAtomVector< Real >, OptDualStdVector< Real, Element >, OptDualStdVector< Real, Element >, ROL::DualProbabilityVector< Real >, OptStdVector< Real, Element >, ROL::SimulatedVector< Real >, ROL::RiskVector< Real >, ROL::DualScaledStdVector< Real, Element >, ROL::PartitionedVector< Real >, ROL::PrimalAtomVector< Real >, ROL::StdVector< Real, Element >, ROL::StdVector< Real >, OptStdVector< Real, Element >, OptStdVector< Real, Element >, ROL::PrimalProbabilityVector< Real >, ROL::CArrayVector< Real, Element >, ROL::SROMVector< Real >, ROL::Vector_SimOpt< Real >, ROL::PrimalScaledStdVector< Real, Element >, and ROL::BatchStdVector< Real >.

Referenced by ROL::EqualityConstraint_Partitioned< Real >::applyAdjointHessian(), ROL::EqualityConstraint< Real >::applyAdjointHessian(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_11(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_12(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_21(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_22(), ROL::EqualityConstraint_Partitioned< Real >::applyAdjointJacobian(), ROL::EqualityConstraint< Real >::applyAdjointJacobian(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointJacobian_2(), ROL::lBFGS< Real >::applyB(), ROL::lDFP< Real >::applyB(), ROL::lSR1< Real >::applyB(), ROL::lBFGS< Real >::applyH(), ROL::lDFP< Real >::applyH(), ROL::lSR1< Real >::applyH(), ROL::EqualityConstraint< Real >::applyJacobian(), ROL::EqualityConstraint_SimOpt< Real >::applyJacobian(), ROL::EqualityConstraint_SimOpt< Real >::applyJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::applyJacobian_2(), ROL::Vector< Real >::axpy(), ROL::BoundInequalityConstraint< Real >::BoundInequalityConstraint(), ROL::EqualityConstraint< Real >::checkAdjointConsistencyJacobian(), ROL::EqualityConstraint_SimOpt< Real >::checkAdjointConsistencyJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::checkAdjointConsistencyJacobian_2(), ROL::EqualityConstraint< Real >::checkApplyAdjointHessian(), ROL::EqualityConstraint_SimOpt< Real >::checkApplyAdjointHessian_11(), ROL::EqualityConstraint_SimOpt< Real >::checkApplyAdjointHessian_12(), ROL::EqualityConstraint_SimOpt< Real >::checkApplyAdjointHessian_21(), ROL::EqualityConstraint_SimOpt< Real >::checkApplyAdjointHessian_22(), ROL::EqualityConstraint< Real >::checkApplyAdjointJacobian(), ROL::EqualityConstraint< Real >::checkApplyJacobian(), ROL::EqualityConstraint_SimOpt< Real >::checkApplyJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::checkApplyJacobian_2(), ROL::Objective< Real >::checkGradient(), ROL::Objective< Real >::checkHessSym(), ROL::Objective< Real >::checkHessVec(), ROL::EqualityConstraint_SimOpt< Real >::checkInverseAdjointJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::checkInverseJacobian_1(), ROL::StochasticProblem< Real >::checkObjectiveGradient(), ROL::StochasticProblem< Real >::checkObjectiveHessVec(), ROL::EqualityConstraint_SimOpt< Real >::checkSolve(), ROL::Vector< Real >::checkVector(), ROL::CompositeEqualityConstraint_SimOpt< Real >::CompositeEqualityConstraint_SimOpt(), ROL::computeDenseHessian(), ROL::computeDotMatrix(), ROL::Constraints< Real >::computeProjectedGradient(), ROL::BoundConstraint< Real >::computeProjectedGradient(), ROL::LogBarrierObjective< Real >::dirDeriv(), ROL::Objective< Real >::dirDeriv(), ROL::ElementwiseVector< Real >::dot(), ROL::RiskNeutralObjective< Real >::getGradient(), ROL::RiskAverseObjective< Real >::getGradient(), ROL::HMCRObjective< Real >::getGradient(), ROL::BPOEObjective< Real >::getGradient(), ROL::LinearCombinationObjective< Real >::gradient(), Objective_GrossPitaevskii< Real >::gradient(), ROL::Reduced_Objective_SimOpt< Real >::gradient(), ROL::Reduced_ParametrizedObjective_SimOpt< Real >::gradient(), ROL::Objective_SimOpt< Real >::gradient_1(), ROL::Objective_SimOpt< Real >::gradient_2(), ROL::LinearCombinationObjective< Real >::hessVec(), ROL::Objective< Real >::hessVec(), ROL::Reduced_Objective_SimOpt< Real >::hessVec(), ROL::Reduced_ParametrizedObjective_SimOpt< Real >::hessVec(), ROL::Objective_SimOpt< Real >::hessVec_11(), ROL::Objective_SimOpt< Real >::hessVec_12(), ROL::Objective_SimOpt< Real >::hessVec_21(), ROL::Objective_SimOpt< Real >::hessVec_22(), ROL::IterationScaling< Real >::initialize(), ROL::CubicInterp< Real >::initialize(), ROL::BackTracking< Real >::initialize(), ROL::GoldenSection< Real >::initialize(), ROL::Bisection< Real >::initialize(), ROL::DogLeg< Real >::initialize(), ROL::DoubleDogLeg< Real >::initialize(), ROL::PathBasedTargetLevel< Real >::initialize(), ROL::Brents< Real >::initialize(), ROL::CauchyPoint< Real >::initialize(), ROL::TruncatedCG< Real >::initialize(), ROL::ProjectedNewtonStep< Real >::initialize(), ROL::Step< Real >::initialize(), ROL::SecantStep< Real >::initialize(), ROL::ProjectedSecantStep< Real >::initialize(), ROL::TrustRegion< Real >::initialize(), ROL::LineSearch< Real >::initialize(), ROL::Bundle< Real >::initialize(), ROL::InteriorPointStep< Real >::initialize(), ROL::BundleStep< Real >::initialize(), ROL::AugmentedLagrangianStep< Real >::initialize(), ROL::NewtonKrylovStep< Real >::initialize(), ROL::MoreauYosidaPenaltyStep< Real >::initialize(), ROL::CompositeStep< Real >::initialize(), ROL::ColemanLiModel< Real >::initialize(), ROL::LineSearchStep< Real >::initialize(), ROL::ProjectedNewtonKrylovStep< Real >::initialize(), ROL::ScalarMinimizationLineSearch< Real >::initialize(), ROL::PrimalDualActiveSetStep< Real >::initialize(), ROL::TrustRegionStep< Real >::initialize(), ROL::KelleySachsModel< Real >::KelleySachsModel(), ROL::LowerBoundInequalityConstraint< Real >::LowerBoundInequalityConstraint(), ROL::MoreauYosidaPenalty< Real >::MoreauYosidaPenalty(), ROL::NonlinearLeastSquaresObjective< Real >::NonlinearLeastSquaresObjective(), ROL::ElementwiseVector< Real >::norm(), ROL::normL1(), ROL::normLinf(), ROL::normLp(), ROL::InteriorPoint::PenalizedObjective< Real >::PenalizedObjective(), ROL::InteriorPoint::PrimalDualSymmetrizer< Real >::PrimalDualSymmetrizer(), ROL::Constraints< Real >::pruneInactive(), ROL::BoundConstraint< Real >::pruneInactive(), ROL::BoundConstraint< Real >::pruneLowerInactive(), ROL::BoundConstraint< Real >::pruneUpperInactive(), ROL::QuadraticPenalty< Real >::QuadraticPenalty(), ROL::QuadraticPenalty_SimOpt< Real >::QuadraticPenalty_SimOpt(), ROL::ProjectedObjective< Real >::reducedHessVec(), ROL::ProjectedObjective< Real >::reducedInvHessVec(), ROL::ProjectedObjective< Real >::reducedPrecond(), ROL::ConjugateGradients< Real >::run(), ROL::ConjugateResiduals< Real >::run(), ROL::GMRES< Real >::run(), ROL::Algorithm< Real >::run(), ROL::EqualityConstraint_SimOpt< Real >::solve(), ROL::EqualityConstraint< Real >::solveAugmentedSystem(), ROL::Secant< Real >::test(), ROL::TrustRegionModel< Real >::TrustRegionModel(), ROL::MeanVariance< Real >::update(), Objective_PoissonInversion< Real >::update(), ROL::MeanDeviation< Real >::update(), ROL::lSR1< Real >::updateStorage(), ROL::Secant< Real >::updateStorage(), ROL::UpperBoundInequalityConstraint< Real >::UpperBoundInequalityConstraint(), ROL::LogBarrierObjective< Real >::value(), and Objective_GrossPitaevskii< Real >::value().

◆ axpy()

template<class Real>
virtual void ROL::Vector< Real >::axpy ( const Real  alpha,
const Vector< Real > &  x 
)
inlinevirtual

Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of x.
[in]xis a vector.
   On return \form#16.
   Uses #clone, #set, #scale and #plus for the computation.
   Please overload if a more efficient implementation is needed.

   ---

Reimplemented in ROL::RiskVector< Real >, ROL::SimulatedVector< Real >, ROL::PartitionedVector< Real >, ROL::SROMVector< Real >, ROL::StdVector< Real, Element >, ROL::StdVector< Real >, ROL::ElementwiseVector< Real >, and ROL::Vector_SimOpt< Real >.

Definition at line 143 of file ROL_Vector.hpp.

References ROL::Vector< Real >::clone(), and ROL::Vector< Real >::plus().

Referenced by ROL::EqualityConstraint< Real >::applyAdjointHessian(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_11(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_12(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_21(), ROL::CompositeEqualityConstraint_SimOpt< Real >::applyAdjointHessian_22(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointHessian_22(), ROL::EqualityConstraint< Real >::applyAdjointJacobian(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointJacobian_2(), ROL::lBFGS< Real >::applyB(), ROL::lDFP< Real >::applyB(), ROL::lSR1< Real >::applyB(), ROL::lBFGS< Real >::applyH(), ROL::lDFP< Real >::applyH(), ROL::lSR1< Real >::applyH(), ROL::EqualityConstraint< Real >::applyJacobian(), ROL::EqualityConstraint_SimOpt< Real >::applyJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::applyJacobian_2(), ROL::InteriorPointStep< Real >::compute(), ROL::AugmentedLagrangianStep< Real >::compute(), ROL::MoreauYosidaPenaltyStep< Real >::compute(), ROL::Constraints< Real >::computeProjectedStep(), ROL::BoundConstraint< Real >::computeProjectedStep(), ROL::CompositeStep< Real >::computeQuasinormalStep(), ROL::LinearCombinationObjective< Real >::gradient(), ROL::Objective< Real >::gradient(), ROL::ZOO::Objective_Zakharov< Real >::gradient(), ROL::CompositeObjective< Real >::gradient(), ROL::ParametrizedCompositeObjective< Real >::gradient(), ROL::MoreauYosidaPenalty< Real >::gradient(), ROL::Objective_SimOpt< Real >::gradient_1(), ROL::CompositeObjective_SimOpt< Real >::gradient_1(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::gradient_1(), ROL::Objective_SimOpt< Real >::gradient_2(), ROL::CompositeObjective_SimOpt< Real >::gradient_2(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::gradient_2(), ROL::LinearCombinationObjective< Real >::hessVec(), ROL::Objective< Real >::hessVec(), ROL::CompositeObjective< Real >::hessVec(), ROL::ParametrizedCompositeObjective< Real >::hessVec(), ROL::MoreauYosidaPenalty< Real >::hessVec(), ROL::Objective_SimOpt< Real >::hessVec_11(), ROL::CompositeObjective_SimOpt< Real >::hessVec_11(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::hessVec_11(), ROL::Objective_SimOpt< Real >::hessVec_12(), ROL::CompositeObjective_SimOpt< Real >::hessVec_12(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::hessVec_12(), ROL::Objective_SimOpt< Real >::hessVec_21(), ROL::CompositeObjective_SimOpt< Real >::hessVec_21(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::hessVec_21(), ROL::Objective_SimOpt< Real >::hessVec_22(), ROL::CompositeObjective_SimOpt< Real >::hessVec_22(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::hessVec_22(), ROL::ZOO::Objective_Zakharov< Real >::invHessVec(), main(), ROL::KelleySachsModel< Real >::primalTransform(), ROL::Constraints< Real >::pruneInactive(), ROL::BoundConstraint< Real >::pruneInactive(), ROL::BoundConstraint< Real >::pruneLowerInactive(), ROL::BoundConstraint< Real >::pruneUpperInactive(), ROL::ConjugateGradients< Real >::run(), ROL::ConjugateResiduals< Real >::run(), ROL::DogLeg< Real >::run(), ROL::DoubleDogLeg< Real >::run(), ROL::TruncatedCG< Real >::run(), ROL::ScalarLinearEqualityConstraint< Real >::solveAugmentedSystem(), ROL::AugmentedLagrangianStep< Real >::update(), ROL::LineSearch< Real >::updateIterate(), ROL::LowerBoundInequalityConstraint< Real >::value(), and ROL::UpperBoundInequalityConstraint< Real >::value().

◆ zero()

template<class Real>
virtual void ROL::Vector< Real >::zero ( )
inlinevirtual

Set to zero vector.

Uses scale by zero for the computation. Please overload if a more efficient implementation is needed.


Reimplemented in ROL::SimulatedVector< Real >, ROL::PartitionedVector< Real >, and ROL::ElementwiseVector< Real >.

Definition at line 157 of file ROL_Vector.hpp.

References ROL::Vector< Real >::scale().

Referenced by ROL::Bundle< Real >::aggregate(), NullOperator< Real >::apply(), ROL::EqualityConstraint_Partitioned< Real >::applyAdjointHessian(), ROL::LowerBoundInequalityConstraint< Real >::applyAdjointHessian(), ROL::UpperBoundInequalityConstraint< Real >::applyAdjointHessian(), ROL::BoundInequalityConstraint< Real >::applyAdjointHessian(), ROL::ScalarLinearEqualityConstraint< Real >::applyAdjointHessian(), ROL::ZOO::InequalityConstraint_HS24< Real >::applyAdjointHessian(), ROL::ZOO::EqualityConstraint_HS32< Real >::applyAdjointHessian(), ROL::SimulatedEqualityConstraint< Real >::applyAdjointHessian(), ROL::EqualityConstraint< Real >::applyAdjointHessian(), DiffusionEqualityConstraint< Real >::applyAdjointHessian_11(), EqualityConstraint_BurgersControl< Real >::applyAdjointHessian_11(), EqualityConstraint_BurgersControl< Real >::applyAdjointHessian_12(), DiffusionEqualityConstraint< Real >::applyAdjointHessian_12(), EqualityConstraint_BurgersControl< Real >::applyAdjointHessian_21(), DiffusionEqualityConstraint< Real >::applyAdjointHessian_21(), ROL::CompositeEqualityConstraint_SimOpt< Real >::applyAdjointHessian_22(), EqualityConstraint_BurgersControl< Real >::applyAdjointHessian_22(), DiffusionEqualityConstraint< Real >::applyAdjointHessian_22(), ROL::EqualityConstraint_Partitioned< Real >::applyAdjointJacobian(), ROL::SimulatedEqualityConstraint< Real >::applyAdjointJacobian(), ROL::EqualityConstraint< Real >::applyAdjointJacobian(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointJacobian_2(), ROL::SimulatedEqualityConstraint< Real >::applyJacobian(), ROL::EqualityConstraint< Real >::applyJacobian(), ROL::InteriorPoint::PrimalDualResidual< Real >::applyJacobian(), ROL::SimulatedEqualityConstraint< Real >::applyPreconditioner(), ROL::Vector< Real >::checkVector(), ROL::BundleStep< Real >::compute(), ROL::PrimalDualActiveSetStep< Real >::compute(), ROL::ConvexCombinationRiskMeasure< Real >::getGradient(), ROL::ConvexCombinationRiskMeasure< Real >::getHessVec(), ROL::MeanVariance< Real >::getHessVec(), ROL::LinearCombinationObjective< Real >::gradient(), ROL::SimulatedObjective< Real >::gradient(), ROL::ZOO::Objective_BVP< Real >::gradient(), ROL::ZOO::Objective_HS25< Real >::gradient(), ROL::SimulatedObjectiveCVaR< Real >::gradient(), ROL::Objective< Real >::gradient(), ROL::CompositeObjective< Real >::gradient(), ROL::ParametrizedCompositeObjective< Real >::gradient(), ROL::MomentObjective< Real >::gradient(), ROL::RiskNeutralObjective< Real >::gradient(), ROL::CDFObjective< Real >::gradient(), ROL::BPOEObjective< Real >::gradient(), ROL::HMCRObjective< Real >::gradient(), ROL::RiskAverseObjective< Real >::gradient(), ROL::Objective_SimOpt< Real >::gradient_1(), ROL::CompositeObjective_SimOpt< Real >::gradient_1(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::gradient_1(), Objective_BurgersControl< Real >::gradient_1(), ROL::Objective_SimOpt< Real >::gradient_2(), ROL::CompositeObjective_SimOpt< Real >::gradient_2(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::gradient_2(), Objective_BurgersControl< Real >::gradient_2(), ROL::LinearObjective< Real >::hessVec(), ROL::LinearCombinationObjective< Real >::hessVec(), ROL::ZOO::Objective_HS39< Real >::hessVec(), ROL::SimulatedObjective< Real >::hessVec(), ROL::Objective< Real >::hessVec(), ROL::CompositeObjective< Real >::hessVec(), ROL::ParametrizedCompositeObjective< Real >::hessVec(), ROL::QuadraticPenalty< Real >::hessVec(), ROL::RiskNeutralObjective< Real >::hessVec(), ROL::MomentObjective< Real >::hessVec(), ROL::CDFObjective< Real >::hessVec(), ROL::RiskAverseObjective< Real >::hessVec(), ROL::BPOEObjective< Real >::hessVec(), ROL::HMCRObjective< Real >::hessVec(), ROL::Objective_SimOpt< Real >::hessVec_11(), ObjectiveFunctionTest08_2< Real >::hessVec_11(), ROL::QuadraticPenalty_SimOpt< Real >::hessVec_11(), ROL::CompositeObjective_SimOpt< Real >::hessVec_11(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::hessVec_11(), Objective_BurgersControl< Real >::hessVec_11(), ObjectiveFunctionTest08_1< Real >::hessVec_12(), ObjectiveFunctionTest08_2< Real >::hessVec_12(), ROL::Objective_SimOpt< Real >::hessVec_12(), ROL::QuadraticPenalty_SimOpt< Real >::hessVec_12(), ROL::CompositeObjective_SimOpt< Real >::hessVec_12(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::hessVec_12(), Objective_BurgersControl< Real >::hessVec_12(), DiffusionObjective< Real >::hessVec_12(), ObjectiveFunctionTest08_1< Real >::hessVec_21(), ObjectiveFunctionTest08_2< Real >::hessVec_21(), ROL::Objective_SimOpt< Real >::hessVec_21(), ROL::CompositeObjective_SimOpt< Real >::hessVec_21(), ROL::QuadraticPenalty_SimOpt< Real >::hessVec_21(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::hessVec_21(), Objective_BurgersControl< Real >::hessVec_21(), DiffusionObjective< Real >::hessVec_21(), ObjectiveFunctionTest08_2< Real >::hessVec_22(), ROL::Objective_SimOpt< Real >::hessVec_22(), ROL::CompositeObjective_SimOpt< Real >::hessVec_22(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::hessVec_22(), ROL::QuadraticPenalty_SimOpt< Real >::hessVec_22(), Objective_BurgersControl< Real >::hessVec_22(), main(), ROL::ConjugateGradients< Real >::run(), ROL::ConjugateResiduals< Real >::run(), ROL::TruncatedCG< Real >::run(), ROL::GMRES< Real >::run(), ROL::Vector< Real >::set(), ROL::EqualityConstraint< Real >::solveAugmentedSystem(), ROL::CompositeStep< Real >::solveTangentialSubproblem(), ROL::SimulatedEqualityConstraint< Real >::value(), and ROL::InteriorPoint::PrimalDualResidual< Real >::value().

◆ basis()

template<class Real>
virtual Teuchos::RCP<Vector> ROL::Vector< Real >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented in H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, ConDualStdVector< Real, Element >, ConDualStdVector< Real, Element >, ConStdVector< Real, Element >, ConStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptStdVector< Real, Element >, ROL::SimulatedVector< Real >, ROL::RiskVector< Real >, ROL::PartitionedVector< Real >, ROL::StdVector< Real, Element >, ROL::StdVector< Real >, OptStdVector< Real, Element >, OptStdVector< Real, Element >, ROL::CArrayVector< Real, Element >, and ROL::Vector_SimOpt< Real >.

Definition at line 172 of file ROL_Vector.hpp.

Referenced by ROL::EqualityConstraint< Real >::applyAdjointJacobian(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointJacobian_2(), ROL::EqualityConstraint< Real >::checkApplyAdjointJacobian(), ROL::computeDenseHessian(), ROL::computeDotMatrix(), ROL::Objective< Real >::gradient(), ROL::Objective_SimOpt< Real >::gradient_1(), ROL::Objective_SimOpt< Real >::gradient_2(), and Objective_PoissonInversion< Real >::update().

◆ dimension()

template<class Real>
virtual int ROL::Vector< Real >::dimension ( void  ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented in H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, ConDualStdVector< Real, Element >, ConDualStdVector< Real, Element >, ConStdVector< Real, Element >, ConStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptDualStdVector< Real, Element >, ROL::RiskVector< Real >, ROL::SimulatedVector< Real >, ROL::PartitionedVector< Real >, OptStdVector< Real, Element >, ROL::StdVector< Real, Element >, ROL::StdVector< Real >, ROL::Vector_SimOpt< Real >, OptStdVector< Real, Element >, OptStdVector< Real, Element >, ROL::SROMVector< Real >, ROL::CArrayVector< Real, Element >, and ROL::BatchStdVector< Real >.

Definition at line 183 of file ROL_Vector.hpp.

Referenced by ROL::EqualityConstraint< Real >::applyAdjointJacobian(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointJacobian_2(), ROL::StdVector< Real >::applyBinary(), ROL::StdVector< Real >::axpy(), ROL::EqualityConstraint< Real >::checkApplyAdjointJacobian(), ROL::computeDenseHessian(), ROL::computeDotMatrix(), ROL::StdVector< Real >::dot(), ROL::Objective< Real >::gradient(), ROL::Objective_SimOpt< Real >::gradient_1(), ROL::Objective_SimOpt< Real >::gradient_2(), and ROL::StdVector< Real >::plus().

◆ set()

template<class Real>
virtual void ROL::Vector< Real >::set ( const Vector< Real > &  x)
inlinevirtual

Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).

Parameters
[in]xis a vector.
   On return \form#18.
   Uses #zero and #plus methods for the computation.
   Please overload if a more efficient implementation is needed.

   ---

Reimplemented in H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, ROL::RiskVector< Real >, ROL::ElementwiseVector< Real >, ROL::SimulatedVector< Real >, ROL::SROMVector< Real >, ROL::PartitionedVector< Real >, ROL::StdVector< Real, Element >, and ROL::StdVector< Real >.

Definition at line 196 of file ROL_Vector.hpp.

References ROL::Vector< Real >::plus(), and ROL::Vector< Real >::zero().

Referenced by ROL::CompositeStep< Real >::accept(), ROL::Bundle< Real >::aggregate(), Identity< Real >::apply(), ROL::DiagonalOperator< Real >::apply(), DyadicOperator< Real >::apply(), ROL::NewtonKrylovStep< Real >::PrecondNK::apply(), ROL::ProjectedNewtonKrylovStep< Real >::PrecondPNK::apply(), ROL::PrimalDualActiveSetStep< Real >::PrecondPD::apply(), ROL::LowerBoundInequalityConstraint< Real >::applyAdjointJacobian(), ROL::UpperBoundInequalityConstraint< Real >::applyAdjointJacobian(), ROL::ScalarLinearEqualityConstraint< Real >::applyAdjointJacobian(), ROL::BarzilaiBorwein< Real >::applyB(), ROL::lDFP< Real >::applyB(), ROL::lDFP< Real >::applyB0(), ROL::Secant< Real >::applyB0(), ROL::lSR1< Real >::applyB0(), ROL::ColemanLiModel< Real >::applyC(), ROL::ColemanLiModel< Real >::applyD(), ROL::lBFGS< Real >::applyH(), ROL::BarzilaiBorwein< Real >::applyH(), ROL::lDFP< Real >::applyH0(), ROL::lSR1< Real >::applyH0(), ROL::Secant< Real >::applyH0(), ROL::DiagonalOperator< Real >::applyInverse(), ROL::LinearOperator< Real >::applyInverse(), TridiagonalToeplitzOperator< Real >::applyInverse(), ROL::ColemanLiModel< Real >::applyInverseD(), ROL::UpperBoundInequalityConstraint< Real >::applyJacobian(), ROL::LowerBoundInequalityConstraint< Real >::applyJacobian(), ROL::EqualityConstraint< Real >::applyPreconditioner(), ROL::EqualityConstraint_SimOpt< Real >::applyPreconditioner(), ROL::CauchyPoint< Real >::cauchypoint_unc(), ROL::GradientStep< Real >::compute(), ROL::BundleStep< Real >::compute(), ROL::NewtonKrylovStep< Real >::compute(), ROL::InteriorPointStep< Real >::compute(), ROL::AugmentedLagrangianStep< Real >::compute(), ROL::MoreauYosidaPenaltyStep< Real >::compute(), ROL::ProjectedNewtonKrylovStep< Real >::compute(), ROL::LineSearchStep< Real >::compute(), ROL::ColemanLiModel< Real >::computeFullReflectiveStep(), ROL::CompositeStep< Real >::computeQuasinormalStep(), ROL::ColemanLiModel< Real >::computeReflectiveStep(), ROL::TrustRegionModel< Real >::dualTransform(), ROL::KelleySachsModel< Real >::dualTransform(), ROL::QuadraticPenalty< Real >::getConstraintVec(), ROL::QuadraticPenalty_SimOpt< Real >::getConstraintVec(), ROL::RiskNeutralObjective< Real >::getGradient(), ROL::RiskAverseObjective< Real >::getGradient(), ROL::HMCRObjective< Real >::getGradient(), ROL::BPOEObjective< Real >::getGradient(), ROL::ZOO::Objective_SumOfSquares< Real >::gradient(), ROL::LogBarrierObjective< Real >::gradient(), ROL::LinearObjective< Real >::gradient(), ROL::QuadraticObjective< Real >::gradient(), ROL::ZOO::Objective_Zakharov< Real >::gradient(), ROL::AugmentedLagrangian< Real >::gradient(), ROL::RiskNeutralObjective< Real >::gradient(), ROL::ObjectiveFromBoundConstraint< Real >::gradient(), ROL::MoreauYosidaPenalty< Real >::gradient(), ROL::AugmentedLagrangian_SimOpt< Real >::gradient_1(), ROL::AugmentedLagrangian_SimOpt< Real >::gradient_2(), ROL::LogBarrierObjective< Real >::hessVec(), ROL::ObjectiveFromBoundConstraint< Real >::hessVec(), ROL::ZOO::Objective_SumOfSquares< Real >::invHessVec(), ROL::ZOO::Objective_Zakharov< Real >::invHessVec(), main(), ROL::Objective< Real >::precond(), ROL::RiskNeutralObjective< Real >::precond(), ROL::RiskAverseObjective< Real >::precond(), ROL::Reduced_Objective_SimOpt< Real >::precond(), ROL::Reduced_ParametrizedObjective_SimOpt< Real >::precond(), ROL::BPOEObjective< Real >::precond(), ROL::HMCRObjective< Real >::precond(), ROL::TrustRegionModel< Real >::primalTransform(), ROL::KelleySachsModel< Real >::primalTransform(), ROL::ColemanLiModel< Real >::primalTransform(), ROL::ZOO::Objective_PoissonInversion< Real >::reg_gradient(), ROL::ZOO::Objective_PoissonInversion< Real >::reg_hessVec(), ROL::DogLeg< Real >::run(), ROL::DoubleDogLeg< Real >::run(), ROL::TruncatedCG< Real >::run(), ROL::StdBoundConstraint< Real >::setVectorToLowerBound(), ROL::BoundConstraint_Partitioned< Real >::setVectorToLowerBound(), ROL::BoundConstraint< Real >::setVectorToLowerBound(), BoundConstraint_BurgersControl< Real >::setVectorToLowerBound(), L2BoundConstraint< Real >::setVectorToLowerBound(), H1BoundConstraint< Real >::setVectorToLowerBound(), ROL::StdBoundConstraint< Real >::setVectorToUpperBound(), ROL::BoundConstraint_Partitioned< Real >::setVectorToUpperBound(), ROL::BoundConstraint< Real >::setVectorToUpperBound(), BoundConstraint_BurgersControl< Real >::setVectorToUpperBound(), L2BoundConstraint< Real >::setVectorToUpperBound(), H1BoundConstraint< Real >::setVectorToUpperBound(), ROL::EqualityConstraint_SimOpt< Real >::solve(), ROL::ZOO::Objective_PoissonInversion< Real >::solve_poisson(), ROL::ScalarLinearEqualityConstraint< Real >::solveAugmentedSystem(), Normalization_Constraint< Real >::solveAugmentedSystem(), ROL::CompositeStep< Real >::solveTangentialSubproblem(), ROL::BatchManager< Real >::sumAll(), ROL::MoreauYosidaPenaltyStep< Real >::update(), ROL::TrustRegionStep< Real >::update(), ROL::LineSearch< Real >::updateIterate(), ROL::UpperBoundInequalityConstraint< Real >::value(), and ROL::LowerBoundInequalityConstraint< Real >::value().

◆ dual()

template<class Real>
virtual const Vector& ROL::Vector< Real >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented in H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorDual< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, H1VectorPrimal< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorDual< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, L2VectorPrimal< Real >, ConDualStdVector< Real, Element >, ConDualStdVector< Real, Element >, ConStdVector< Real, Element >, ConStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptDualStdVector< Real, Element >, OptDualStdVector< Real, Element >, ROL::DualAtomVector< Real >, OptStdVector< Real, Element >, ROL::DualProbabilityVector< Real >, ROL::SimulatedVector< Real >, ROL::DualScaledStdVector< Real, Element >, ROL::RiskVector< Real >, ROL::PartitionedVector< Real >, OptStdVector< Real, Element >, ROL::PrimalAtomVector< Real >, OptStdVector< Real, Element >, ROL::PrimalProbabilityVector< Real >, ROL::SROMVector< Real >, ROL::Vector_SimOpt< Real >, and ROL::PrimalScaledStdVector< Real, Element >.

Definition at line 213 of file ROL_Vector.hpp.

Referenced by ROL::CompositeStep< Real >::accept(), ROL::NewtonKrylovStep< Real >::PrecondNK::apply(), ROL::ProjectedNewtonKrylovStep< Real >::PrecondPNK::apply(), ROL::PrimalDualActiveSetStep< Real >::PrecondPD::apply(), ROL::EqualityConstraint< Real >::applyAdjointJacobian(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::applyAdjointJacobian_2(), ROL::BarzilaiBorwein< Real >::applyB(), ROL::lDFP< Real >::applyB(), ROL::lSR1< Real >::applyB(), ROL::lDFP< Real >::applyB0(), ROL::Secant< Real >::applyB0(), ROL::lSR1< Real >::applyB0(), ROL::lDFP< Real >::applyH(), ROL::lBFGS< Real >::applyH(), ROL::BarzilaiBorwein< Real >::applyH(), ROL::lSR1< Real >::applyH(), ROL::lDFP< Real >::applyH0(), ROL::lSR1< Real >::applyH0(), ROL::Secant< Real >::applyH0(), ROL::ScalarLinearEqualityConstraint< Real >::applyJacobian(), ROL::EqualityConstraint< Real >::applyPreconditioner(), ROL::AugmentedLagrangian< Real >::AugmentedLagrangian(), ROL::AugmentedLagrangian_SimOpt< Real >::AugmentedLagrangian_SimOpt(), ROL::CauchyPoint< Real >::cauchypoint_unc(), ROL::EqualityConstraint< Real >::checkAdjointConsistencyJacobian(), ROL::EqualityConstraint_SimOpt< Real >::checkAdjointConsistencyJacobian_1(), ROL::EqualityConstraint_SimOpt< Real >::checkAdjointConsistencyJacobian_2(), ROL::EqualityConstraint< Real >::checkApplyAdjointJacobian(), ROL::Objective< Real >::checkGradient(), ROL::Objective< Real >::checkHessVec(), ROL::CompositeEqualityConstraint_SimOpt< Real >::CompositeEqualityConstraint_SimOpt(), ROL::TrustRegionStep< Real >::computeCriticalityMeasure(), ROL::AugmentedLagrangianStep< Real >::computeGradient(), ROL::ParametrizedCompositeObjective< Real >::computeHessVec(), ROL::CompositeObjective< Real >::computeHessVec(), ROL::CompositeObjective_SimOpt< Real >::computeHessVec11(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::computeHessVec11(), ROL::CompositeObjective_SimOpt< Real >::computeHessVec12(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::computeHessVec12(), ROL::CompositeObjective_SimOpt< Real >::computeHessVec21(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::computeHessVec21(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::computeHessVec22(), ROL::CompositeObjective_SimOpt< Real >::computeHessVec22(), ROL::CompositeStep< Real >::computeQuasinormalStep(), ROL::LineSearchStep< Real >::GradDotStep(), ROL::CompositeObjective< Real >::initialize(), ROL::ParametrizedCompositeObjective< Real >::initialize(), ROL::CompositeObjective_SimOpt< Real >::initialize(), ROL::ParametrizedCompositeObjective_SimOpt< Real >::initialize(), ROL::HMCRObjective< Real >::initialize(), ROL::BPOEObjective< Real >::initialize(), ROL::ColemanLiModel< Real >::minimize1D(), ROL::MoreauYosidaPenalty< Real >::MoreauYosidaPenalty(), ROL::NonlinearLeastSquaresObjective< Real >::NonlinearLeastSquaresObjective(), ROL::Objective< Real >::precond(), ROL::RiskNeutralObjective< Real >::precond(), ROL::RiskAverseObjective< Real >::precond(), ROL::Reduced_Objective_SimOpt< Real >::precond(), ROL::Reduced_ParametrizedObjective_SimOpt< Real >::precond(), ROL::BPOEObjective< Real >::precond(), ROL::HMCRObjective< Real >::precond(), ROL::QuadraticPenalty< Real >::QuadraticPenalty(), ROL::QuadraticPenalty_SimOpt< Real >::QuadraticPenalty_SimOpt(), ROL::ProjectedObjective< Real >::reducedHessVec(), ROL::ProjectedObjective< Real >::reducedInvHessVec(), ROL::ProjectedObjective< Real >::reducedPrecond(), ROL::DogLeg< Real >::run(), ROL::DoubleDogLeg< Real >::run(), ROL::Algorithm< Real >::run(), ROL::ScalarLinearEqualityConstraint< Real >::solveAugmentedSystem(), ROL::EqualityConstraint< Real >::solveAugmentedSystem(), ROL::CompositeStep< Real >::solveTangentialSubproblem(), ROL::TrustRegion< Real >::update(), ROL::RiskNeutralObjective< Real >::update(), ROL::Bundle< Real >::update(), ROL::ScalarLinearEqualityConstraint< Real >::value(), ROL::KelleySachsModel< Real >::value(), ROL::TrustRegionModel< Real >::value(), and ROL::ColemanLiModel< Real >::value().

◆ applyUnary()

template<class Real>
virtual void ROL::Vector< Real >::applyUnary ( const Elementwise::UnaryFunction< Real > &  f)
inlinevirtual

◆ applyBinary()

template<class Real>
virtual void ROL::Vector< Real >::applyBinary ( const Elementwise::BinaryFunction< Real > &  f,
const Vector< Real > &  x 
)
inlinevirtual

◆ reduce()

template<class Real>
virtual Real ROL::Vector< Real >::reduce ( const Elementwise::ReductionOp< Real > &  r) const
inlinevirtual

◆ checkVector()

template<class Real>
virtual std::vector<Real> ROL::Vector< Real >::checkVector ( const Vector< Real > &  x,
const Vector< Real > &  y,
const bool  printToStream = true,
std::ostream &  outStream = std::cout 
) const
inlinevirtual

Verify vector-space methods.

Parameters
[in]xis a vector.
[in]yis a vector.
   Returns a vector of Reals, all of which should be close to zero.
   They represent consistency errors in the vector space properties,
   as follows:

   - Commutativity of addition: \form#19.
   - Associativity of addition: \form#20.
   - Identity element of addition: \form#21.
   - Inverse elements of addition: \form#22.
   - Identity element of scalar multiplication: \form#23.
   - Consistency of scalar multiplication with field multiplication: \form#24.
   - Distributivity of scalar multiplication with respect to field addition: \form#25.
   - Distributivity of scalar multiplication with respect to vector addition: \form#26.
   - Commutativity of dot (inner) product over the field of reals: \form#27.
   - Additivity of dot (inner) product: \form#28.
   - Consistency of scalar multiplication and norm: \form#29.
   - Reflexivity: \form#30 .

   The consistency errors are defined as the norms or absolute values of the differences between the left-hand
   side and the right-hand side terms in the above equalities.

   ---

Definition at line 259 of file ROL_Vector.hpp.

References ROL::Vector< Real >::clone(), and ROL::Vector< Real >::zero().

Referenced by main().


The documentation for this class was generated from the following file: